Thursday, 23 July 2015

Rezz-Fuzz 3 in 1: RAT + βr + Octaver

For this guitar pedal project I wanted to mix some of my most iconic distortion effects into a single one:

  1. Turbo-RAT is the distortion that was used by one of my favourite 90s bands: Teenage Fanclub
  2. βr (Beta or hFE reverse) is a technique used on the Fuzz War pedal by DeathByAudio, designed by Oliver Ackermann, singer and guitarrist of one of my favourite 2000s bands: A Place to Bury Strangers
  3. Octave Up was kind of a wink to noisy fuzz pedals like the Shin-Ei Fuzz used by Jesus & Mary Chain, one of my favourite bands of 80s, 90s that adds a doubler to increase high frecuency harmonics.
Gerard Love, TFC bassist, showing a Turbo RAT pedal (picture from Bandwagonesque album vinyl jacket)
Oliver Ackermann from A Place to Bury Strangers showing a Fuzz War pedal
Shin-Ei Fuzz Wah pedal

William Reid "pedalboard" (Fuzz-Wah on the right)
So the Rezz-Fuzz 3 in 1 pedal basically had to be a:

RAT + βr + Octave Up

Apart from that, I wanted to experiment with different type of diodes for the hard clipping section of the RAT distortion part.
The main issue was that mixing both pedals into one would require too many knobs: 3 for the RAT, 3 for the Fuzz War, plus one for the octave up, plus at least 2 switch buttons: one for clipping diode selection and at least one for effect switching, that is far too many controls for a single pedal to be packed in a 1590BB box.

Some simplification had to be made, the first one was to remove tone control on the RAT and replace it by octave up control. But since only one effect is used at a time, it would be good to reuse the same knobs for both effects. The solution was to use analog SPDT switches for two potentiometers on each of the 3 potentiometer contacts, plus another 2 SPDT switches for effect input and output selection. A 4053 device includes 3 SPDT switches, 3 of them were required.

Schematics

These are the schematics of the Rezz-Fuzz 3 in 1 effect in Eagle CAD:


On the top it's the βr or reverse hfe part of the circuit consisting of 7 transistor stages. At first sight there seems to be a big mistake on this circuit: Those NPN transistors seem to be inverted, but they are actually not, collector and emitter are inverted on purpose, actually base-emitter and base-collector both consist of a PN junction and they could be inverted, except that the gain of the resultant inverted transistor is what is called the βr (or hfe reverse) which usually is much lower than the direct gain. Here is an article from AMZ website that explains the characteristics of  reverse beta amplifiers, apparently the clipping on a reversed transistor is quite different from a regular transistor generating different harmonics. The reason for having 7 transistors is because the gain on reverse beta transistors is much lower.

The problem with this is that actually the reverse hfe on most transistors is not specified, is not part of the manufacturing control process, and hence it may have wide variations. So the only choice here is manual selection after gain measurement with a multimeter able to measure hfe. On the other hand, this add a uniqueness to each pedal, and maybe the need to manually adjust resistors for each manufactured effect. The other issue is that I am not sure that Spice models can actually simulate the real behavior of transistor in reverse configuration. For this reason I will not include LTSpice simulations of the circuit.
I had to manually adjust the resistor values to make this circuit work, the final resistor values were very different from schematics published on internet. The recommended transistor base pull-ups were 430K on the first 5 stages and 910K on the last two stages, I had to change the value to 820K on the first 5 stages to properly bias the circuit and make it work. The recommended transistor emitter pull-downs were 390 ohms, I changed the values to 270 ohms. The recommended transistor collector pull-ups were 100K on the first 6 stages and 180K on the last 2 stages, I had to change the values to 1.2K in all stages in order to make it work.

In the middle of the schematics page, there are three 4053D 3-SPDT analog switch devices, the one on the left only uses two SPDT switches to select the input and the output of the selected effect (RAT or βr), the other two switch devices connect the three potentiomenter terminals to the desired effect. The switch device at the center is used to select the gain (RAT or βr) and the switch device on the right side of the page is used to select distortion/octave up mix for the RAT or tone for the βr effect.

At the bottom of the page it's the RAT effect with input and output buffer, soft clipping amplifier (that uses unbalanced diode clipping, R42 resistor is not installed) on top and octave-up on the bottom. Octave-up amplifier uses the feedback voltages between the feedback diodes and resistors to build a fully rectified version of the distorted signal.

The mix of soft-clipped signal and octave-up goes through a hard-clipping section where three options can be chosen: hard clipping with germanium diodes, no clipping or hard clipping with LED diodes.

On the bottom left side of the page it's the +9V DC input jack connector, battery terminals, an EMI filter, resistor divider to generate mid point voltage of +4.5V, decoupling capacitors and inversion protection diode.

On the top right side there is a 6-pin 0.1'' header footprint to solder a flat cable between the effect PCB and the 3PDT push-button foot switch PCB. A small PCB was designed in order to directly connect the foot switch and the PCB with a 0.1'' pitch flat cable.

PCB layout

The PCB was made on two layers with dimensions of 85 mm x 75 mm with chamfered corners to leave place for box screw holes. Three footswitch PCBs were also added.
PCB top layer


PCB bottom layer
The finished pedal with a Turbo RAT look:
Rezz Fuzz 3 in 1: RAT + βr + Octaver

Wednesday, 1 July 2015

DMFX-1: Open Source Digital Multi-Effects guitar pedal (1)

Rezzonics© presents the most compact digital multi-effects guitar pedal, completely open source, giving you the opportunity to create your own stereo effects or use a huge range of pre-programmed effects.

Every analog or digital effect your guitar needs in one compact format. The best of both worlds: ANALOG for overdrive, distortion, fuzz, octave-up, DIGITAL for echo, delay, chorus, tremolo, phaser, flanger... and many others you can imagine: looper, pitch shift, reverb, leslie...

DMFX-1 main features:
  • TI C55x 16-bit fixed point DSP, providing quality, low power and low cost
  • Dual DSP for low latency, real time signal processing and fully independent Audio and Control processing.
  • Up to two SD/MMC cards for Software and audio data storage
  • One graphical LCD 128x32 pixels Blue with White LED backlight for better visibility
  • Up to 5 configurable LEDs
  • One 5-button display navigator for seamless effect configuration
  • Up to five digitally controlled and configurable potentiometers
  • Analog configurable input distortion (overdrive, crunch, vintage, fuzz...)
  • Analog octave-up effect, mixable with distortion
  • Dual Mono L/R Line Output
  • Stereo Headphones output
  • Guitar Mono Line input
  • Analog input / output buffers and filters
  • Standard +9V DC or USB +5V DC power input
  • Up to 2x USB 2.0 ports (Audio, Control) for PC connectivity
  • Optional USB debugging port XDS100v2, TI Code Composer Studio compatible
  • Foot switch input
  • Compact size: 130 mm x 110 mm x 32 mm (W x D x H)
A stand-alone unit: just plug your guitar, your headphones and configure your desired effect easily via the navigator and LCD menus.

Stereo effects like reverb or speaker rotating effects like leslie can be emulated thanks to the dual mono and stereo outputs.

Analog feel can be emulated thanks to five configurable potentiomenters digitally controlled.

JFET buffer input, low THD distortion, low-voltage, rail-to-rail audio opamps and filters to better adapt guitar signal input and reduce input noise. Exclusive low-cost Schottky diode distortion circuits that emulate germanium clipping diodes.

Analog support for Tuner and Noise compression.

One graphical LCD 128x32 pixels Blue with White LED backlight for better visibility in dark places. A 5-buttons navigator (up-down-left-right-OK) allows easy navigation and effect configuration through menus.

One dedicated audio DSP and one dedicated control DSP provide low latency and real time, while reducing the bill of materials. Control DSP is used for status / commands operations: LCD, buttons and potentiometer control, while Audio DSP is fully dedicated to real time audio effects.

Up to two USB 2.0 (type Mini-B) interfaces allow pedal connection to a PC, for command / status or audio exchange.

Up to two SD/MMC cards can be connected to audio DSP for huge program and audio data storage.

One additional USB (Type-B) interface allows JTAG-Boundary Scan DSP debugging using TI XDS100v2 and Code Composer Studio for implementing your DSP effects.

Open source libraries will offer free digital effect exchange and improvement.

Several assembly options for low cost and high performance scalability.

DMFX-1 is low power, it can be powered by batteries, external +9V DC-DC converter or USB port.

DMFX-1 is compact: Main board + mezzanine board can be packed on a 148 mm x 100 mm x 24 mm enclosure (W x D x H)


Compact size: 148 mm x 100 mm x 24 mm (W x D x H)
3D view of the 2 PCB DMFX-1 guitar pedal (image created with FreeCAD)
DMFX-1 front view showing connectors

DMFX-1 rear view showing USB connectors


DMFX-1 block diagram

COMING SOON!!
STAY TUNED!!

Saturday, 9 May 2015

Transformerless Negative Ion Generator - Enclosure (3/3)

The enclosure was made using 10 mm thick plywood, with external dimensions of 160 x 200 x 200 mm (W x H x D)
Find here below mechanical drawings with dimensions. Front and rear sides are shown in blue. Top and bottom sides in red and left and right sides in green.
The box consists of a basic frame where left-right sides and top-bottom sides where joined using finger joints 40 mm long 10 mm deep. 3x40 mm fingers on each panel side are joined to 2x40 mm fingers on the adjacent panel. Wood paste was used to cover the
There is a squared chamfered 75 mm window in the front cover (140 x 130 mm), where the ionizer needle grid will be installed. An aluminum panel 140 x 50 mm and 2 mm thick is used to install 2 potentiometers, one switch and one blue LED.

The rear cover (180 x 140 mm) has a circular hole Ø90 mm for the fan air exhaust. All sides and corners are filed and rounded to allow covering with red tolex.
10 mm square wood cleats made out of the same plywood are used to reinforce the corners. they are glued leaving 10 mm distance to the front and rear borders to allow installing the front and rear covers. Only 2 mm are left for the aluminum plate on the front bottom side as shown in the picture below.
The box front panel as well as the inside has been painted in red. A red tolex has been glued on the top, bottom, left and right sides.
The PCB fully assembled with front panel, potentiometers, knobs, power-on switch and power-on blue LED. PCB has been connected with wire cables to the AC outlet, fan and ionizer needle grid ready for testing with a digital multimeter.
The rear panel has been covered with tolex too. The picture below shows the fan installed with a plastic fanguard with filter. A wire frame has been installed in order to place an additional disposable carbon filter.The AC outlet includes a fuse.
The needle grid is made out of 1 mm thick wire and nails. Four segments of wire where soldered to a square frame of wire. Four nails where soldered to each wire segment for a 16 pins needle grid.

The picture below shows the front panel  with the needle grid installed as well as the aluminum faceplate with two knobs, power-on swith and power-on blue LED. The left button controls the output voltage of the ionizer, and the right button controls the speed of the fan. There is no risk in touching the needle grid or the screws connected to high voltage because they are protected with high impedance resistors, but an additional plastic cover could be added.


Friday, 8 May 2015

Transformerless Negative Ion Generator - PCB realization (2/3)

PCB realization

The figure below shows the schematics in Eagle CAD of the Negative Ion Generator.
At the bottom left, the AC fan speed controller based on a TRIAC, a DIAC, capacitor, resistor and 500kohm potentiometer. At the middle left, the 220VAC to 75VDC transformerless converter based on 75V Zener and TVS diodes. At the middle-center, the 75VDC to 350VDC step-up (boost) converter based on Linear Technology LT3758A and at the top the 20-stages capacitor-diode voltage multiplier connected to the switching node of the step-up converter. R15 3.3Mohm resistor allows discharging the voltage multipliers capacitors when the circuit is switched off.

C1 4.7nF generates a Soft-Start of the step-up converter that reduces current load at start-up. R2 10.5 kohm is chosen for a 1MHz frequency switching.

R5 must not be installed, otherwise U1 could be damaged!!

Please be aware that R17-R18 resistors are normally not installed, they allow bypassing the 220VAC to 75VDC and the 75VDC to 350VDC in order to connect the voltage multipliers directly to the mains. This is the traditional approach and much simpler negative ion generator that multiplies the 220VAC directly. This option was considered in case the step-up converter approach did not work properly. In this case, all the components between the 220VAC input L-N-GND (including R19) and POT1-2-3 are not installed, R16 is not installed and R17-R18 are installed instead. In this case the switching frequency goes from the 1MHz switching generated by LT3758A to the 50Hz frequency of the mains supply.

Typical diodes used in the voltage multiplier circuits are through-hole mounting devices 1N4007 (1kV). In this case 1kV avalanche SMD diodes AR1PM where used. Capacitor must be at least 1kV rated. Proper rating voltage has to be used in all components in order to withstand the high voltages of the circuit.


Below is the view of the PCB layout (160 x 100 mm). There is no reference ground plane underneath the high voltage area of the voltage multipliers to avoid arcing to GND. The 3.5kV and the 350V areas have been highlighted and labelled with silkscreen. TP1 test point is at 10V when the regulator output is at maximum voltage output of 350V, and at 5.5V when the output voltage is at minimum of 195V:

You can have access to the Bill of Materials on the Digikey website, please note that all components quantities are multiplied by two except for the fan and accessories.

As mentioned in the previous simulation blog entry, C7 2.2uF was not big enough to allow circuit start-up, due to initial peak current loads, so an additional 0.68uF capacitor (CGA9M4X7T2W684K200KA) had to be added in parallel to C7, to increase start-up current;
D2 75V Zener SMA diode had to be replaced by bigger SMB device (SMBJ5374B-TP) and 75V TVS SMA diode had to be replaced by bigger SMC device (SMCJ75A) to allow power dissipation at low loads.

ATTENTION!! Very high voltages are present on this circuit which can be harmful

Verification of the circuit has to be very careful and special safety measures has to be considered. I recommend wearing protective rubber gloves when probing the circuit to avoid getting an electric shock if inadvertently touching a high voltage point. The PCB input has 220VAC, the PCB area in the center, highlighted with silkscreen, from the output of LI and Q1 to R16 reaches 350VDC and the PCB area to the left with no ground reference plane from R15 to JP5, where all the capacitor-diodes voltage multipliers are located, goes from 350VDC to almost 3.5kV. Do not approach these high-voltages areas, the only points that need to be verified are the 75VDC output that can be probed at the right side of R11 or the right pin of JP1 if LED is not installed, and the test point TP1 that divides the output voltage of the DC-DC converter by 35. This test point will be between 5.5V to 10V depending on the position of the 100kohm potentiometer tap connected to POT1-2-3.

There is no risk if touching JP5 or the needle grid connected to it, since there are three 3.3Mohm resistors in series after the 3.5kV output of the voltage multipliers, if the needle grid is touched all the voltage will drop in this 10Mohm resistance.

The capacitor values used on the voltage multipliers are quite low so they do not store a lot of charge. I actually think that to increase the ionizer efficiency these capacitor values should be multiplied by 10, or all of them increased to 100nF, present values range from 10nF to 2.2nF. In this case a 1MHz frequency on the boost converter switching is probably not needed and it could be decreased.

The fan speed controller can actually been improved by increasing R21 from 4.7kohm to a higher value to be manually verified (probably between 100 kohm and 200 kohm), because the fan stops when R20 potentiometer tap is in the middle of its full sweep.

Transformerless Negative Ion Generator - Simulations (1/3)

______________________________
WARNING!! 
This project implies the generation of very high voltages that may be harmful. 
Please check your own safety when working with high voltages, use protective measures like rubber gloves and avoid proximity to high voltage areas of the circuit.
______________________________
WARNING!! 
This project could generate ozone levels that could be dangerous for your health.
ASHRAE recommends that ozone levels should not exceed 0.05 ppm.
CSA recommends an ozone limit of 0.04ppm.
I have no means to measure the possible generation of ozone on this device.
Use it at your own risk.
_______________________________

There is actually a lot of controversy going around regarding the dangers, safety and healthy properties of air purifiers, negative ion or ozone generators, specially regarding some cheap models found on the internet. I don't want to hide these discussions and I invite you to inform you on this matter before you decide to go on and build a negative ion generator. Use it at your own risk. I will post some videos at the end of this post.

Many years ago I discovered an article on an electronic magazine on a simple negative ion generator, based on cascaded capacitor-diode voltage multiplier from a regular 220VAC mains supply. The article described the benefits of negative ions as air purifier, removing dust, pollen and other contaminants from air, the presence of negative ions on water falls and other idylic places where you find calm and relaxation, how the air is charged with positive ions before a storm creating an oppressive and heavy atmosphere and how the air is charged with negative ions after the storm. So I decided to make this simple negative ion generator with a single big needle that concentrated a high negative voltage on its tip.

In order to test it I filled a glass jar with smoke and I put the needle inside the inverted jar so that the smoke could not slip out. When the generator was switched on a turbulence was created within the container and after a couple of minutes there was no trace of smoke inside the jar. I showed the smoke test to my father and he was so impressed that asked me to make an ion generator to put on his office, at the time it was allowed to smoke in the work places.

I found on another electronic magazine another negative ion generator boxed kit that had several needles. The circuit was a bit more complex, using an oscillator at higher frequency and a high voltage transformer plus the capacitor-diode voltage multipliers at the end. It worked OK but the dust and smoke deposited on the plastic box and around it leaving a dark stain around the ion generator, the transformer also generated a high pitch noise almost inaudible but that could be annoying at a work place.

The tips of the needles glowed and there was this peculiar ozone smell, which I found quite pleasant that reminded this smell after a storm. By reading through internet I found that a too high negative voltage (corona effect) can actually ionize the oxygen in the air and create ozone, which actually can be harmful if one is exposed to certain levels for a long time.

Years later I decided to make my own negative ion generator design but adding several features:
  • A quiet fan with variable speed to move dirty air through the ion generator
  • A disposable carbon filter where the dirt could be retained
  • A variable ionizing high voltage
  • Avoid the use of noisy and bulky transformers
I thought of using a high voltage (around 220Vrms) oscillator at a higher frequency than the mains 50/60Hz so that could be easily filtered with low capacitor values, for example 1MHz.

A step-up switching regulator actually chops a DC voltage generating a square wave that can then be filtered to a DC voltage with a capacitor-diode filter. If the regulator is adjustable by adding a potentiometer in the feedback input of the regulator, the converter generates a square signal that once filtered could generate and adjustable DC voltage output, then reusing the same square voltage output of the regulator and adding a capacitor-voltage multiplier a high negative voltage output could be also generated.

The first step was to find a step-up DC-DC regulator with the highest input voltage possible. Initially I thought that I should use an inverting regulator where the output voltage should be negative, since the voltage multiplier had to generate a negative high voltage, but actually I could connect a simple capacitor-diode to generate a positive regulated output voltage to be used by the feedback resistor bridge and in parallel connect the capacitor-diode voltage multiplier to generate the high negative voltage.

I found a Linear Technology step-up regulator, LT3758A that could fit my needs. This device supports an input voltage of up to 100V, there are not many DC-DC regulators that actually support this high input voltage.  This device can be used in isolated flyback, SEPIC, inverting (my first idea) and boost (step-up) configuration. I used it in boost configuration.

The next step was to generate a DC high input voltage from the mains 220VAC supply, the usual method would be to use a transformer, but I wanted to get rid of the transformer. Usually a negative ion generator does not need very high currents since the goal is to generate a very high negative voltage that generates negative ions in the air, so the current required is mostly the current generated by the switching regulator plus the leaked current through the air and capacitor slow discharge.

An easy transformerless AC-DC power supply uses a resistor-capacitor impedance followed by a diode bridge and a zener diode to set up the output voltage. In order to be in the secure zone of the voltage regulator I decided to use 75VDC output at 120mA output current for a total of less than 10W power consumption.

Finally I selected a quiet 220VAC fan, the ORION OA92-22-2TB, and a speed regulator circuit based on a triac and a diac.

LTSpice simulations:

The figure below shows negative ion main circuit simulations schematics consisting of 75V to 350V step-up regulator and capacitor-diode voltage multiplier with 20 stages.

The figure below shows the waveforms of the switching signal at the output of the MOSFET and inductor (Vi1), and the "regulated" output voltage (Vo1) with the output voltage control potentiometer at minimum, 120 kohm on the top resistor and 1 kohm on the bottom resistor for a Vfb=1.6V, which corresponds to Vo1 = 194V. The output voltage is approximately 200V, it shows a lot of ripple because the capacitor used for the diode-capacitor filter is quite low, 4.7nF, but the goal is to keep the regulator switching to actually charge the voltage multiplier.
The figure below shows the output of the 20 capacitor-diode stages voltage multiplier (Vout) which is approximately -1.8kV, which corresponds to a voltage multiplication factor of more than 9 times.
The figure below shows the waveforms of the switching signal at the output of the MOSFET and inductor (Vi1), and the "regulated" output voltage (Vo1) with the output voltage control potentiometer at maximum, 220 kohm on the top resistor and 1 kohm on the bottom resistor for a Vfb = 1.6V, which corresponds to Vo1 = 353V. The output voltage is approximately 350V.

The figure below shows the output of the 20 capacitor-diode stages voltage multiplier (Vout) which is approximately -3.3kV !!
Below are the schematics of the 220VAC to 75VDC transformerless converter based on 2.2uF capacitor, bridge diode, 75V Zener diode and 75V TVS diode. The TVS diode has been added for extra overvoltage protection. The circuit is calculated for a current consumption of less than 150mA.
The figure below shows the output voltage of the transformerless AC-DC regulator, for an initial current of 120mA, followed by a zero current load, the output voltage goes from 75V @ 120mA to 84V @ 0mA:
This circuit actually has an issue because it has an almost constant power consumption of 75Vx120mA= 9W, if there is no load, most of the power consumption goes to the Zener and TVS diodes which actually could get hot and even exceed maximum power dissipation. The following figure shows the power consumption on the load, the 75V Zener diode and the 75V TVS diode at 120mA and at 0 mA:
When the load is at maximum 120mA most of the power, 8.7W, is dissipated by the load, but at a low load of 50mA only 4W are dissipated by the load and the rest of the power goes to the 75V Zener diode, 2W, and almost 4W to the 75V TVS diode, peak power of 10W but RMS power of 5W.

The problem of this circuit is that the load is quite variable, the 75V to 350V step-up DC-DC converter demands a peak of current at start-up but once the output capacitors are charged there is almost no current consumption apart from the switching to keep the capacitors charged. Zener diode has to be calculated for 3W or more and TVS diode for 5W or more to have some margin and they still will get hot.

Actually once the circuit was finished, the peak current at start-up was excessive and the output of the AC-DC never got to 75V, the 2.2uF capacitor (C3 in the simulation schematics) had to be increased adding a 0.68uF capacitor (C4). This value was manually adjusted by progressively increasing the capacity from 0.1uF until the AC-DC output reached 75V, but then, when the load was low, Zener and TVS diodes exceeded their rated power.

The 75V Zener diode had to be changed from an SMA 3W to an SMC 5W, and the 75V TVS diode had to be changed from SMA 3.3W to SMC 6.5W.
_________________
Controversy around the safety of negative ion generators, air purifiers, ozone generators:

Saturday, 29 November 2014

Rezzonics version of the Shin-Ei Fuzz-Wah - Sound check (4/4)

The reference signal is just a sequence of chords recorded into the computer with the pedal in bypass mode. This is the bypassed clean signal: This is the same sequence of chords with Fuzz at maximum gain, tone cut off and Wah off: It's a rough tone with lots of high harmonics due to the octaver fuzz without tone filtering. Now the chord sequence with Fuzz maximum gain but this time the tone cut filter is on. Wah is off. High harmonics are somewhat reduced while mid tones are reinforced by the tone cut filter. Chord sequence with Fuzz at maximum gain, tone cut is off, Wah is on: This time a guitar riff is used instead of a sequence of chords, Fuzz is set at maximum gain, Wah is of, tone cut filter is set consecutively off and on: Guitar riff with fuzz at maximum gain, Wah is on, tone cut filter is set alternatively on and then off: This is the playlist with all the different sounds used in the sound check for comparison: I thought that the best way to check the sound of the Super Fuzz-Wah pedal was on a real song, so this is the cover of Jesus & Mary Chain's song Just Like Honey, from their album Psychocandy. The Fuzz-Wah pedal was connected as input to the TubeSim amp and Rezzonics 1x12 cabinet speaker:

Rezzonics version of the Shin-Ei Fuzz-Wah - Pedal assembly (3/4)

The Fuzz-Wah was mounted on a 1590B Hammond enclosure, with two NKK M2012SS1W01 SPDT ON-ON switches, two Alpha RV16AF-10-20R1-A100K 16 mm A100K potentiometers, one Alpha RV16AF-10-20R1-A50K 16 mm A50K potentiometer, one Neutrik NMJ6HCD2 1/4'' Stereo phone jack as input connector, one Neutrik NMJ4HCD2 1/4'' Mono phone jack as output connector, one Alpha SF17020F-0302-21R-L 3PDT foot pushbutton switch, one Switchcraft 722A 2 mm DC power jack, one 5 mm blue LED, one 5mm LED bezel chrome, one 9V battery snap, and three black flute knobs with line indicator.

I buy most of the electronics at Mouser website, but some of the accessories are difficult to find, so there is an excellent German website specialized in pedals kits, components and accessories called Musikding.

It's quite hard to pack PCB, pots, jacks, battery and switches on a 1590B enclosure, so in order to design, plan and place all the different components I create a three view drawing with all the components on Inkscape. Inkscape allows copying an image from a pdf datasheet  convert it into a vectorial drawing,with the powerful Trace Bitmap tool, edit and delete lines or points, scale it and group all the lines into a single component that then can be moved and properly placed. This allows getting a better idea on how everything is going to fit in and avoid having troubles and discovering too late that a component does not properly fit. See the picture below. This is extremely useful, specially in this case, where it's extremely challenging to place three knobs and pots, two toggle switches and one foot push button switch on the faceplate. We have to be sure that everything fits in a there is enough place to add the faceplate design:
Fig 1. Inkscape three view pedal mechanical drawing
I also use Inkscape to design the faceplate. I create numbered knob dials, symbols, shapes, texts and drills as a group of lines that I can later reuse. In this case I used Aeroplane Flies High font for the Rezzonics and Rezz Fuzz v2 labels:

I did a simple design in blue and printed it on a transparent sheet. I decided rather not paint the enclosure but sand and polish the aluminum to leave it's natural metallic color and glue the transparent sheet with the faceplate design in blue. In order to better protect the laser printer blue ink, I printed the design in reverse, Inkscape allows easily reversing or flipping the design.

Water sanding to finer grains and polishing is quite a tedious work but the final chrome-like result is quite nice. Afterwards, holes are made using a multi-drill bit, I recommend using this type of drill for better results.

I used a repositionable adhesive spray to glue the transparent sheet. Faceplate shape is cut and adjusted to the enclosure after water sanding and polishing. Adhesive is applied to the transparent sheet and leave for 2 minutes to let evaporate and reduce the number of bubbles, then is firmly applied using a clean cloth with outwards movements, avoiding formation of bubbles and taking care that the faceplace keeps aligned with the borders and does not slides out of the enclosure faceplate.
The little defects, shades, and bubbles, disappeared as the adhesive dried out.
The Fuzz-Wah pedal finished. Knobs are Main volume or Level, Fuzz Gain, Wah frequency, Wah off-on switch and tone cut off-on switch. Footswitch is a true bypass.

The pedal finished and powered-on.